Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 158: 106816, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37003070

RESUMO

BACKGROUND: As a developmental disorder, the brain networks of autism children show abnormal patterns compared with that of typically developing. The differences between them are not stable due to the developing progress of children. It has become a choice to study the differences of developing trajectories between autistic and typically developing children by investigating the change of each group respectively. Related researches studied the developing of brain network by analyzing the relationship between network indices of the entire or sub brain networks and the cognitive developing scores. METHODS: As a matrix decomposition algorithm, non-negative matrix factorization (NMF) was applied to decompose the association matrices of brain networks. By NMF, we can obtain subnetworks in an unsupervised way. The association matrices of autism and control children were estimated by their magnetoencephalography data. NMF was applied to decompose the matrices to obtain common subnetworks of both groups. Then we calculated the expression of each subnetwork in each child's brain network by two indices, energy and entropy. The relationship between the expression and the cognitive and development indices were investigated. RESULTS: We found a subnetwork with left lateralization pattern in α band showed different expression tendency in two groups. The expression indices of two groups were correlated with cognitive indices in autism and control group in an opposite way. In γ band, a subnetwork with strong connections on right hemisphere of brain showed a negative correlation between the expression indices and development indices in autism group. CONCLUSION: NMF algorithm can effectively decompose brain network to meaningful subnetworks. The finding of α band subnetworks confirms the results of abnormal lateralization of autistic children mentioned in relevant studies. We assume the results of decrease of expression of the subnetwork may relate to the dysfunction of mirror neuron. The decrease expression of γ subnetwork of autism may be related to the weaken process of high-frequency neurons in the neurotrophic competition.


Assuntos
Transtorno Autístico , Humanos , Criança , Encéfalo , Magnetoencefalografia/métodos , Algoritmos , Imageamento por Ressonância Magnética
2.
Sci Rep ; 13(1): 2124, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746997

RESUMO

Dicentric chromosome analysis is the gold standard for biological dose assessment. To enhance the efficiency of biological dose assessment in large-scale radiation catastrophes, automatic identification of dicentric chromosome images is a promising and objective method. In this paper, an automatic identification method for dicentric chromosome images using two-stage convolutional neural network is proposed based on Giemsa-stained automatic microscopic imaging. To automatically segment the adhesive chromosome masses, a k-means based adaptive image segmentation and watershed segmentation algorithm is applied. The first-stage CNN is used to identify the dicentric chromosome images from all the images and the second-stage CNN works to specifically identify the dicentric chromosome images. This two-stage CNN identification method can effectively detects chromosome images with concealed centromeres, poorly expanded and long-armed entangled chromosomes, and tricentric chromosomes. The novel two-stage CNN method has a chromosome identification accuracy of 99.4%, a sensitivity of 85.8% sensitivity, and a specificity of 99.6%, effectively reducing the false positive rate of dicentric chromosome. The analysis speed of this automatic identification method can be 20 times quicker than manual detection, providing a valuable reference for other image identification situations with small target rates.


Assuntos
Transtornos Cromossômicos , Humanos , Redes Neurais de Computação , Algoritmos , Centrômero , Processamento de Imagem Assistida por Computador/métodos
3.
Sci Rep ; 12(1): 3913, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273270

RESUMO

Cytokinesis block micronucleus (CBMN) assay is a widely used radiation biological dose estimation method. However, the subjectivity and the time-consuming nature of manual detection limits CBMN for rapid standard assay. The CBMN analysis is combined with a convolutional neural network to create a software for rapid standard automated detection of micronuclei in Giemsa stained binucleated lymphocytes images in this study. Cell acquisition, adhesive cell mass segmentation, cell type identification, and micronucleus counting are the four steps of the software's analysis workflow. Even when the cytoplasm is hazy, several micronuclei are joined to each other, or micronuclei are attached to the nucleus, this algorithm can swiftly and efficiently detect binucleated cells and micronuclei in a verification of 2000 images. In a test of 20 slides, the software reached a detection rate of 99.4% of manual detection in terms of binucleated cells, with a false positive rate of 14.7%. In terms of micronuclei detection, the software reached a detection rate of 115.1% of manual detection, with a 26.2% false positive rate. Each image analysis takes roughly 0.3 s, which is an order of magnitude faster than manual detection.


Assuntos
Processamento de Imagem Assistida por Computador , Linfócitos , Algoritmos , Citocinese , Humanos , Processamento de Imagem Assistida por Computador/métodos , Micronúcleos com Defeito Cromossômico , Testes para Micronúcleos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...